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Efficacy of the isospin-symmetry-breaking correction in Fermi beta decay  
 

I. S. Towner and J. C. Hardy  
 

In the determination of the Cabibbo-Kobayashi-Maskawa (CKM) matrix element Vud from 
superallowed Fermi beta decay, a crucial requirement is the application of nuclear-structure-dependent 
theoretical corrections.  True, these corrections are small – of the order of 1% or less – but their 
evaluation is subject to some uncertainty.  One of the most important of these corrections is the isospin-
symmetry-breaking correction, δC, which is wholly nuclear-structure dependent.  It is defined as 

 
  MF

2 = M0
2 (1 - δC) ,        (1) 

 
where MF is the Fermi matrix element and M0 is its value in the isospin-symmetry limit.  The most 
widely used calculations of δC are those of Towner and Hardy (TH) [1] but those calculations have 
recently been criticized by Miller and Schwenk (MS) [2], who claim that they are based on a formally 
incorrect interpretation of the isospin operator.  Although MS claim that this “incorrect” usage must have 
led to incorrect results for δC, they do not produce any “exact” calculations with which to compare.  
Instead they proceed to make significant model-dependent assumptions of their own, from which they 
conclude – without numerical results – that the omissions from TH must be significant in magnitude.  In 
our opinion, their model is considerably less sophisticated than ours and has not been independently 
corroborated by experimental data as ours has.  Thus, if there is indeed any omission in the TH 
corrections, there is currently no valid estimate of the importance of that omission. 

For now, the best that can be done to validate any set of calculated corrections is to test their 
efficacy in achieving agreement with the basic tenets of weak-interaction theory, particularly the 
conserved vector current (CVC) hypothesis, but also the unitarity of the CKM matrix.  It is in tests such 
as these that the TH calculations perform astonishingly well, strongly suggesting that the putative 
omissions, if any, must have a negligible effect.   

A variety of different models have been used in the past for the isospin-symmetry-breaking 
correction.  They are: 

 
• Shell model – Saxon-Woods (SM-SW).  This is the model of TH, in which proton and 

neutron radial functions are taken as eigenfunctions of a Saxon-Woods potential whose 
parameters are adjusted to match experimental separation energies. 

• Shell model – Hartree-Fock (SM-HF).  This is similar to SM-SW except that the radial 
functions are taken to be eigenfunctions of a mean-field Skyrme-Hartree-Fock potential.  
First proposed by Ormand and Brown [3], their protocol was recently altered by Hardy and 
Towner [4] to ensure that the proton mean field had the asymptotically correct form. 

• Hartree-Fock -- Random Phase Approximation (HF-RPA).  A Skyrme-Hartree-Fock 
calculation is performed for the even-even A-body system (the decaying state when TZ = -1, 
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the daughter state when TZ = 0).  The odd-odd nucleus is then treated as a particle-hole 
excitation built on the even-even Hartree-Fock state.  The particle-hole spectrum is computed 
in the RPA with charge-dependent interactions.  First calculations of this type were 
performed by Sagawa, van Giai and Suzuki [5].  Recently, they were extended by Liang, van 
Giai and Meng [6] who replaced Skyrme zero-range interactions by finite-range meson-
exchange potentials.  They performed relativistic Hartree-Fock (RHF-RPA) calculations and 
relativistic Hartree-only (RH-RPA) calculations with density-dependent meson-nucleon 
couplings and non-local interactions. 

• Isovector Monopole Resonance (IVMR).  A particle-hole picture was also envisaged by 
Auerbach [7] in which isospin-symmetry breaking in the parent and daughter states of beta 
decay is attributed to the difference in their couplings to the giant isovector monopole 
resonance.  To obtain numerical estimates, Auerbach appealed to a number of “gross” 
models discussed in ref [8].  Each model enabled him to obtain a simple expression for δC as 
a function of the mass number A.  As an example, his expression in the microscopic model is 

 
    δC = 18.0 X 10-7 A5/3.     (2) 
 
• Damgaard Model.  First estimates of δC were provided by Damgaard [9], who expanded the 

proton radial function in terms of a complete set of neutron oscillator functions.  The set 
comprises states of the same orbital angular momentum, ℓ, but differing in the number of 
radial nodes, n.  Most of the mixing was with the state with one more radial node.  
Attributing this mixing to the Coulomb force, Damgaard derived 

 
     δC = 0.2645 Z2 A-2/3(n + 1)(n +  ℓ  + 3/2),    (3) 
 
      which exhibits a general behavior δC α A4/3 with some shell structure superimposed through 

the choice of oscillator quantum numbers n and ℓ.  In particular, a proton radial function with 
one radial node gets a factor of two enhancement in its δC value over that with no radial 
nodes, simply from the factor (n+1) in Eq. (3).  Such factors are absent in the formulae of 
Auerbach [7]. 

 
The computation of isospin-symmetry breaking in Fermi beta decay is patently model dependent.  

So on what grounds can one assert that one model is better than another?  The usual way forward in such 
situations is to appeal to experiment, but in this case experiment does not directly measure the correction 
δC.  However, experiment has led to precise values for the ft values of a large number of superallowed 
transitions – 13 in all – and, if we assume that both CKM unitarity and CVC are satisfied, we can convert 
those experimental ft values into experimental values for δC and compare the results with each 
calculation in turn.  To be more specific, the application of our two assumptions is described as follows: 
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• The conserved vector current (CVC) hypothesis is correct.  Under this hypothesis, the 

corrected Ft values in superallowed Fermi beta decay must be the same for all nuclei with 

the same isospin assignment.  The relation between the corrected Ft value and the 

experimental ft value is 
 

     Ft = ft (1 + δR) (1 - δC) ,     (4) 

 
 
 where δR is the nucleus-dependent part of the radiative correction and δC is the isospin-

symmetry-breaking correction.  To date, 13 nuclei ranging from 10C to 74Rb have 
superallowed transitions with ft values measured to an accuracy of ±0.4% or better.  Thus 
we can obtain an “experimental” value of δC from the relation 

 

     (1 - δC) = [Ft]av /{ft(1+δR)}    (5) 

  
 using ft values from the most recent data survey [4] and the calculated radiative corrections 

(δR = δR’  + δNS) from ref. [1].  The value we use for [Ft]av follows from our second 

assumption. 
 
• The CKM matrix is unitary.  The sum of the squares of the top-row elements of the matrix 

is assumed to be exactly equal to one.  The value of Vus obtained from the analysis of kaon-
decay data, 0.22521(94) [10], and Vub from the Particle Data Group, 0.00393(36) [11], are 
also assumed to be correct.  Under these conditions the value of |Vud|2 is given by: 

 
   |Vud|2 = 1 - |Vus|2 - |Vub|2 = 0.94927 ± 0.00042 .  (6) 
 

Further, |Vud|2 is inversely proportional to [Ft]av, the average corrected ft value.  

Consequently we can write 
 

          [Ft]av = (2915.64 ± 1.08)/ |Vud|2 = 3071.47 ± 1.78 s ,   (7) 

 
 the value we use in evaluating Eq. (5). 

 
Thus, we have a set of “experimental” δC values, compared to which the various theoretical 

calculations can be assessed.  In Fig. 1 we plot these “experimental” δC values as points with error bars, 
together with theoretical values from the different models available.  The success of each model can be 
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judged by the quality of the fit.  To quantify this we evaluate the χ2 per degree of freedom using the 
equation 
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where N is the number of cases computed with a particular theory (e.g. the authors of HF-RPA only 
compute δC for 9 of the 13 cases).  The weights, wi, are taken to be 1/σi

2, where σi is the standard 

 
FIG. 1. Isospin-symmetry breaking correction, δC, in percent units as a function of the charge 
number, Z, for the daughter nucleus.  “Experimental” values of δC (points with error bars) are 
those required of the theory if the experimental data is to satisfy the CVC hypothesis and the 
unitarity of the CKM matrix.  The references for each calculation are as follows: SM-SW [1], 
SM-HF (HT09) [4], SM-HF (OB95) [3], HF-RPA (SGII) [5], RHF-RPA (PK01) [6], RH-RPA 
(DD-ME2) [6], IVMR (Microscopic) [7,8], Damgaard [9]. 
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deviation assigned to the “experimental” δC value.  It is clear from the figure that the best agreement 
comes from the shell model, with Saxon-Woods radial functions doing better than Hartree-Fock radial 
functions.  The HF-RPA and IVMR particle-hole models are generally under-predicting the correction, 
particularly in the heavier nuclei. 

Obviously, if superallowed beta decay is to continue to be used to test the unitarity of the CKM 

matrix, one has to accept the possibility that the “true” correction terms might lead to Ft values that do 

not satisfy the unitarity condition.  However, if they lead to Ft values that change from transition to 

transition – thus violating CVC – one would not even be justified in extracting a value for Vud at all, let 
alone using that value to test CKM unitarity.  In judging the results of Fig. 1 in that context, we might 
consider that the most definitive test of the isospin-symmetry-breaking corrections is whether they fit the 
variations in the “experimental” values from one Z value to another as required by CVC, irrespective of a 
possible overall additive constant, which would be the effect of a violation of CKM unitarity.  Using this 
criterion, the shell-model results remain the best, but the RHF-RPA (PK01) model ranks as a close 
second. 

With no numerical calculations to check, the Miller and Schwenk claims [2] cannot be tested at 
all, but with respect to the many models that actually can be checked, the shell-model calculations of 
Towner and Hardy [1, 4] stand up very well.  
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